
International Journal of Computer Trends and Technology Volume 69 Issue 10, 43-46, Oct, 2021

ISSN: 2231 – 2803 / https://doi.org/10.14445/22312803/IJCTT-V69I10P107 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Bitcoin and the Theory of Computation

Martin V. Sewell

Cambridge, United Kingdom

Received Date: 13 September 2021

Revised Date: 15 October 2021

 Accepted Date: 28 October 2021

Abstract — Bitcoin is assessed from the perspective of the

theory of computation. Specifically, the computational power

of Bitcoin is determined in the context of both computability

theory and automata theory. In computability theory, there

exists a hierarchy of functions, from the most powerful to the

least powerful: partial recursive, total recursive, primitive

recursive, elementary recursive, and lower elementary

recursive. Whilst in automata theory, there exists a hierarchy

of automata, from the most to least powerful: Turing

machine, linear bounded automaton, non-deterministic

pushdown automaton, deterministic pushdown automaton,

and finite automaton. In both instances, Bitcoin lies within or

below the least powerful category. Bitcoin is essentially a

finite automaton that employs a scripting language for data

manipulation that is even less powerful than a lower

elementary recursive programming language. Bitcoin is not

Turing-complete, either in whole or in part. For security

reasons, Bitcoin was designed to be only as powerful as

necessary.

Keywords — Automata theory, Bitcoin, Computability

theory, Theory of computation, Turing-complete.

I. INTRODUCTION

The goal of this paper is to assess Bitcoin[1] in the context

of the theory of computation. The power of Bitcoin shall be

assessed in terms of both computability theory and automata

theory. Computability theory allows us to classify

programming languages in terms of the set of functions that

they are able to calculate. Whilst automata theory can be

used to classify automata by the class of formal languages

that they are able to recognize.

The remainder of the paper proceeds as follows. In

Section II, we utilize computability theory and, in the context

of Bitcoin, consider five classes of functions in turn, from the

least to the most powerful: lower elementary recursive,

elementary recursive, primitive recursive, total recursive, and

partial recursive. The data-manipulation rules employed by

Bitcoin are even less powerful than the lower elementary

recursive functions. Whilst in Section III, we utilize automata

theory and, in the context of Bitcoin, consider five classes of

automata, from the least to the most powerful: finite

automaton, deterministic pushdown automaton, non-

deterministic pushdown automaton, linear bounded

automaton, and Turing machine. Bitcoin may be considered a

finite automaton. In Section IV, we conclude.

This article was written in part whilst working for nChain

Limited.

II. COMPUTABILITY THEORY

Computability theory allows us to classify data-

manipulation rules (e.g., programming languages) in terms of

the set of functions that they are able to calculate. When

analyzing the power of Bitcoin in the context of

computability theory, we are concerned with the data-

manipulation rules within the Bitcoin client that govern

Bitcoin transactions. Bitcoin uses a scripting system for

processing transactions known as Script. Script is similar to

Forth, and is a simple, stack-based language processed from

left to right. In programming languages, a loop provides a

way of repeating instructions. The two most common loops

are the while loop and the for loop, but a for loop is merely

syntactic sugar for a while loop, supporting a subset of the

use cases that while supports. To avoid the possibility of

infinite loops, which would consume all available processor

time and can cause a computer to hang, Script does not

include any statements that enable loops. Recursion is

equivalent to a loop plus a stack, so Script also has no

recursion. Therefore with Script, each instruction is executed

at most once in a linear manner, and any program will always

halt.

Of course, with Script, if one wishes to emulate looping

through a piece of code n times, one can simply repeat the

code n times. One can even repeat the code m times and use

if-then statements such that the code will only be repeated n

(≤ m) times, where the stack initially contains n.However,

this is not emulating loops in the proper sense because the

code should produce the correct result for all n, not just n≤ m.

We can classify Script in terms of the set of functions that

the language is able to calculate. The computability hierarchy

of functions includes partial recursive, total recursive,

primitive recursive, elementary recursive, and lower

elementary recursive functions and can be described by the

nested subsets shown in Fig. 1. Bitcoin Script is included and

is a proper subset of the lower elementary recursive

functions. All functions work over the natural numbers.

http://www.internationaljournalssrg.org/

Martin V. Sewell / IJCTT, 69(10), 43-46, 2021

44

Fig. 1 Computability hierarchy of functions

A. Lower Elementary Recursive Functions

The lower elementary recursive functions are constructed

using the following basic functions[2]:

• The zero function returns zero, f(x) = 0.

• The successor function, f(x) = x + 1. Via the

repeated application of a successor function, one

can achieve addition.

• Projection functions are used for ignoring

arguments, for example f(a, b) = a.

• The subtraction function, f(x, y) = x-y if y<x, or 0 if

y≥x, is used to define conditionals and iteration.

• Composition involves applying values from some

elementary recursive function as an argument to

another elementary recursive function. If h is

elementary recursive and each gi is elementary

recursive, f(x1, …, xn) = h(g1(x1, …, xn), …, gm(x1,

…, xn)) is elementary recursive.

• Bounded summation: if g is elementary

recursive, f(𝑚, 𝑥1, … , 𝑥𝑛) = ∑ g(𝑖, 𝑥1, … , 𝑥𝑛)𝑚
𝑖=0 is

elementary recursive.

The lower elementary recursive functions have

polynomial growth. Because none of the functions in Script

has time complexity greater than polynomial, in principle,

the lower elementary recursive functions can perform

everything that Script can perform. In order to perform

bounded summation, one needs finite loops of the form ‘for i

= 1 to n do…’ where n (the number of times the loop

executes) is fixed in advance (before the loop starts), and you

cannot change i or n inside the loop. Lacking loops, it is clear

that Script is unable to perform bounded summation.

Therefore, the functions that Script can perform are a proper

subset of the functions that may be performed by the lower

elementary recursive functions. Script is thus less powerful

than any of the five sets of functions defined.

B. Elementary Recursive Functions

The elementary recursive functions are functions that can

be obtained from addition, multiplication, subtraction, and

division, using basic operations such as substitutions and

finite summation and product. The definitions of elementary

recursive functions are the same as for the lower elementary

recursive functions, with the addition of the bounded

product.

• Bounded product: if g is elementary

recursive, f(𝑚, 𝑥1, … , 𝑥𝑛) = ∏ g(𝑖, 𝑥1, … , 𝑥𝑛)𝑚
𝑖=0 is

elementary recursive.

The LOOP programming language is a core imperative

language in which programs consist only of assignments,

sequences, and bounded loops.[3]The elementary functions

are characterized by programs written in LOOP in which the

nesting of for loops is restricted to a depth of at most 2.

C. Primitive Recursive Functions

The primitive recursive functions are the functions that

can be computed by Turing machines that always halt and

contain no infinite loops. The definition of primitive

recursive functions is the same as for elementary recursive

functions, except that bounded summation and bounded

product are replaced by primitive recursion.

• Primitive recursion is such that, given f, a k-ary

primitive recursive function, and g, a (k+2)-ary

primitive recursive function, the (k+1)-ary function h is

defined as the primitive recursion of f and g, i.e. the

function h is primitive recursive whenh(0,x1, …, xk) =

f(x1, …, xk) andh(S(y), x1, …,xk) = g(y,h(y,x1, …, xk),

x1, …, xk)).

Primitive recursive programming languages include

LOOP[3] and BlooP[4].

D. Total Recursive Functions

The total recursive functions are the set of functions that

can be computed by Turing machines that always halt. An

example of a total computable function that is not primitive

recursive is the Ackermann function.[5] One common

version, with nonnegative integers n and m, is defined as

follows:

A(0,n)=n+1,

A(m+1,0)=A(m,1) and

A(m+1,n+1)= A(m,A(m+1,n)).

The halting problem is a decision problem that can be

stated as follows: given the description of an arbitrary

program and a finite input, decide whether the program will

halt or run forever. Alan Turing proved in 1936 that a general

algorithm (running on a Turing machine) to solve the halting

problem for all possible program-input pairs could not

exist[6, 7]. The halting problem is undecidable. Assume that

we have a programming language that captures exactly the

total recursive functions. It must be well defined, so we can

construct an algorithm that takes an arbitrary function and a

finite input and decides whether or not the function can be

implemented using the programming language. This

contradicts the fact that the halting problem is undecidable.

Martin V. Sewell / IJCTT, 69(10), 43-46, 2021

45

Therefore a programming language that captures exactly the

total recursive functions cannot exist.

E. Partial Recursive Functions

The partial recursive functions are the set of functions that

can be computed by Turing machines. A Turing machine is a

mathematical model of a hypothetical computing machine

that manipulates symbols on a strip of tape according to a

predefined set of rules. We already know that Script cannot

calculate all of the partial recursive functions, so it is not

Turing-complete. However, it is straightforward to prove it

directly. Consider a Turing machine defined by a two-

symbol alphabet {0, 1} and one state {A}, with the rules:

when reading 0, write 0 and move the tape one cell right and

stay in state A; when reading 1, write 1 and move the tape

one cell right and stay in state A. It should be clear that such

a program never halts. A programming language is said to be

Turing-complete if it can be used to simulate any single-

taped Turing machine. As any program written in Script

always halts (even with unbounded memory), it is clear that

Script cannot simulate the described Turing machine.

Therefore, Script is not Turing-complete.

F. Discussion

To conclude this section, Script cannot implement loops,

so cannot calculate all of the lower elementary recursive

functions, and is not Turing-complete. More generally,

because Bitcoin’s data-manipulation rules ensure that the

system always halts, Bitcoin is not Turing-complete.

The script is unusual in not being able to implement loops.

Microsoft’s language Bosque has no loops, but it does have

recursion. Whilst the vast majority of programming

languages are Turing-complete. As in practice, most

computable functions are primitive recursive; one could

argue that the benefits gained by using a Turing-complete

language are not worth the costs associated with infinite

loops. However, in general, the size or complexity of a

function written in a Turing-complete language is smaller

than the equivalent function written in a primitive recursive

programming language.[8]

In contrast to Bitcoin, Ethereum[9], a blockchain with

smart contract functionality, provides a virtual machine that

can execute Turing-complete scripts. In practice, infinite

loops are avoided by requiring that each transaction sets a

limit to how many computational steps of code execution it

can use, and users must pay for this limit in advance using a

scarce resource. Because the limit is fixed in advance of the

code being executed, unbounded loops are not possible, and

thus Ethereum is not Turing-complete either.

III. AUTOMATA THEORY

Automata theory is the study of abstract computing

devices that follow a predetermined sequence of operations

automatically.[10] An automaiton consumes a string of input

symbols, called a word. For each input symbol, it transitions

to a new state and continues until all input symbols have

been consumed. It then accepts or rejects the given string of

symbols. The set of all the words accepted by an automaton

is called the language recognized by the automaton. The

languages recognized by automata may be classified as

nested subsets. Thusautomata may be ranked in terms of how

powerful they are. The larger the subset of languages

recognized, the more power the automata has. Fig. 2 shows

the hierarchy of automata, along with Bitcoin as a finite

automaton.

Fig. 2 Hierarchy of automata

We now consider each type of automata in turn, from the

least powerful to the most powerful, and how they relate to

Bitcoin.

A. Finite Automaton

A finite automaton is the least powerful type of automata

that we consider, and can be represented formally by a 5-

tuple, M= 〈Q, Σ, δ, s, F〉, where:

• Q is a finite set of states,

• Σ is a finite set of input symbols (the alphabet),

• δ is the transition function, δ:Q ×Σ →Q, mapping

state-input pairs to successor states,

• s is the start state (s∈Q), and

• F is the set of accepting states (F⊆Q).

A finite automaton accepts regular languages. A finite

automaton requires a transition function such that the next

state is a function of the current state and the current input

symbol. Is Bitcoin a finite automaton? Bitcoin may be

considered a finite automaton if we let transactions be the

input symbols, the blockchain represents states, and the

Bitcoin Core code the transition function.

B. Deterministic Pushdown Automaton

A deterministic pushdown automaton is essentially a finite

automaton plus a stack and accepts the deterministic context-

free languages. So a pushdown automaton requires a stack,

plus a transition function such that the next state is a function

of the current state, the current input symbol, and the symbol

at the top of the stack. Is Bitcoin a deterministic pushdown

automaton? The stacks within Script are contained within

VerifyScript, which does not enable the transfer of any data

Martin V. Sewell / IJCTT, 69(10), 43-46, 2021

46

from one instance to another, so the stacks have no memory

of past transactions. Alternatively, if the blockchain

represents the stack, the transition function, VerifyScript,

must have access to some external state within the Bitcoin

Core code, but VerifyScript is not a function of any external

state. Therefore Bitcoin is not a deterministic pushdown

automaton.

C. Nondeterministic Pushdown Automaton

A non-deterministic pushdown automaton is similar to a

deterministic pushdown automaton, except that the transition

function is a multivalued function. That is, the transition

function maps the current state, the current input symbol, and

the symbol at the top of the stack to a set of states (zero, one,

or more). We may think of a non-deterministic pushdown

automaton as branching at every step, and if at least one of

the permutations accepts the input string, the string is said to

be recognized by the automaton. A non-deterministic

pushdown automaton can recognize all context-free

languages. Because Bitcoin is not a deterministic pushdown

automaton, it cannot be a non-deterministic pushdown

automaton (which is more powerful).

D. Linear Bounded Automaton

A linear bounded automaton is a non-deterministic Turing

machine that satisfies the following three conditions[11]:

• Its input alphabet includes two special symbols, serving

as left and right end markers.

• Its transitions may not print other symbols over the end

markers.

• Its transitions may neither move to the left of the left

end marker nor to the right of the right end marker.

Because Bitcoin is not a pushdown automaton, it is not a

linear bounded automaton (which is more powerful).

E. Turing Machine

We defined a Turing machine above as a mathematical

model of a hypothetical computing machine that manipulates

symbols on a strip of tape according to a predefined set of

rules. Perhaps more useful in the current context is to note

that a Turing machine is equivalent to a pushdown

automaton with two stacks. That is, every language that is

accepted by a Turing machine can also be accepted by a

deterministic pushdown automaton with two stacks. Whilst a

non-deterministic two-stack pushdown automaton is

equivalent to a deterministic two-stack pushdown automaton.

With a Turing machine, the next state is a function of the

current input symbol, the current state, the symbol at the top

of stack 1, and the symbol at the top of stack 2. Turing

machines accept all recursively enumerable languages.

Because Bitcoin is not a linear bounded automaton (or a

pushdown automaton), it cannot be a Turing machine (which

is more powerful).

F. Discussion

To conclude this section, Bitcoin may be considered a

finite automaton, but not a deterministic pushdown

automaton, a non-deterministic pushdown automaton, a

linear bounded automaton, or a Turing machine. The only

memory Bitcoin has the blockchain, which represents its

state.

IV. CONCLUSION

In computability theory, there exists a hierarchy of

functions, from the most to least powerful: partial recursive,

total recursive, primitive recursive, elementary recursive, and

lower elementary recursive. Whilst in automata theory, there

exists a hierarchy of automata, from the most powerful to the

least powerful: Turing machine, linear bounded automaton,

non-deterministic pushdown automaton, deterministic

pushdown automaton, and finite automaton. In both

instances, Bitcoin lies within or below the least powerful

category. Bitcoin is essentially a finite automaton that

employs a scripting language for data manipulation that is

even less powerful than a lower elementary recursive

programming language. Bitcoin was designed to be as

powerful as it needed to be, and no more. No part of Bitcoin

is Turing-complete. The entire Bitcoin system only becomes

Turing-complete if we use a Turing-complete programming

language to broadcast transactions.

ACKNOWLEDGMENTS

The author wishes to thank an anonymous internal

reviewer from Ledger for useful feedback.

REFERENCES
[1] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system,

https://bitcoin.org/bitcoin.pdf (bitcoin.org) (2008).

[2] Wikipedia, ELEMENTARY,
https://en.wikipedia.org/wiki/ELEMENTARY, (2021).

[3] A. R.Meyer, and D. M.Ritchie., The complexity of loop programs, in

S. Rosenthal, Ed. ACM ’67: Proceedings of the 1967 22nd national
conference. New York: Association for Computing Machinery, (1967)

465–469.

[4] D. R.Hofstadter, Gödel, Escher, Bach: An eternal golden braid. New
York: Basic Books, (1979).

[5] W. Ackermann, Zum Hilbertschen Aufbau derreellen Zahlen,

Mathematische Annalen, 99(1) (1928)118–133.
[6] A. M.Turing, On computable numbers, with an application to the

Entscheidungs problem, Proceedings of the London Mathematical

Society, s2-42 (1) (1937) 230–265.
[7] A. M.Turing, On computable numbers, with an application to the

Entscheidungs problem. A correction, Proceedings of the London

Mathematical Society, s2-43 (1) (1938) 544–546.
[8] M. Blum, On the size of machines, Information and Control, 11(3)

(1967) 257–265.

[9] G.Wood, Ethereum: A secure decentralized generalized transaction
ledger, https://ethereum.github.io/yellowpaper/paper.pdf., (2020).

[10] J. E.Hopcroft, R. Motwani, &J. D.Ullman., Introduction to automata

theory, languages, and computation,3rd ed. Harlow: Pearson, (2014).
[11] Wikipedia, Linear bounded automaton,

https://en.wikipedia.org/wiki/Linear_bounded_automaton, (2020).

